Fuck Yeah Fluid Dynamics

Celebrating the physics of all that flows. Ask a question, submit a post idea or send an email. You can also follow FYFD on Twitter and Google+. FYFD is written by Nicole Sharp, PhD.

Recent Tweets @
Posts tagged "vibration"

Atomization is the process of breaking a liquid into a spray of fine droplets. There are many methods to accomplish this, including jet impingement, pressure-driven nozzles, and ultrasonic excitement. In the images above, a drop has been atomized through vibration of the surface on which it rests. Check out the full video. As the amplitude of the surface’s vibration increases, the droplet shifts from rippling capillary waves to ejecting tiny droplets. With the right vibrational forcing, the entire droplet bursts into a fine spray, as seen in the photo above. The process is extremely quick, taking less than 0.4 seconds to atomize a 0.1 ml drop of water. (Photo and video credit: B. Vukasinovic et al.; source video)

Sloshing is a problem with which anyone who has carried an overly full cup is familiar. Because of their freedom to flow and conform to any shape, fluids can shift their shape and center of mass drastically when transported. The issue can be especially pronounced in a partially-filled tank. The sloshing of water in a tank on a pick-up truck, for example, can be enough to rock the entire vehicle. One way to deal with sloshing is actively-controlled vibration damping - in other words, making small movements in response to the sloshing to keep the amplitude small. This is exactly the kind of compensation we do when carrying a mug of coffee without spilling. (Image credit: Bosch Rexroth; source)

Sloshing is a problem with which anyone who has carried an overly full cup is familiar. Because of their freedom to flow and conform to any shape, fluids can shift their shape and center of mass drastically when transported. The issue can be especially pronounced in a partially-filled tank. The sloshing of water in a tank on a pick-up truck, for example, can be enough to rock the entire vehicle. One way to deal with sloshing is actively-controlled vibration damping - in other words, making small movements in response to the sloshing to keep the amplitude small. This is exactly the kind of compensation we do when carrying a mug of coffee without spilling. (Image credit: Bosch Rexroth; source)

Paint seems to dance and leap when vibrated on a speaker. Propelled upward, the liquid stretches into thin sheets and thicker ligaments until surface tension can no longer hold the the fluid together and droplets erupt from the fountain. Often paints are shear-thinning, non-Newtonian fluids, meaning that their ability to resist deformation decreases as they are deformed. This behavior allows them to flow freely off a brush but then remain without running after application. In the context of vibration, though, shear-thinning properties cause the paint to jump and leap more readily. For more images, see photographer Linden Gledhill’s website. (Photo credit: L. Gledhill; submitted by pinfire)

Vibrating a liquid droplet produces some awesome behavior. The video above shows a water droplet vibrating on a subwoofer at real-time speeds. The behavior and shape of the droplet shifts with the frequency of vibration, which we hear as a change in pitch. To see more clearly the shapes a particular frequency induces, check out this high-speed video of vibrating water droplets. For a given driving frequency, the droplet’s shape, or mode, is distinct and consistent. For a droplet vibrating to a song, though, there is more than one frequency driving its motion. In this case, the droplet’s shape is a superposition of the individual modes, which is just a way of saying adding the shapes together. So frequency determines the droplet’s shape. The vibration amplitude, or audible volume, affects how energetic the drop’s motion is. And the fluid’s surface tension and viscosity act as dampers to the system, controlling how quickly the drop can change shape as well as how well it holds together. (Video credit: A. Read) 

Many systems can exhibit unstable behaviors when perturbed. The classic example is a ball sitting on top of a hill; if you move the ball at all, it will fall down the hill due to gravity. There is no way to perturb the ball in such a way that it will return to the top of the hill; this makes the top of the hill an unstable point. In many dynamical systems, a very small perturbation may not be as obviously unstable as the ball atop the hill, especially at first. Often a perturbation will have a very small effect initially, but it can grow exponentially with time. That is the case in this video. Here a tank of fluid is being vibrated vertically with a constant amplitude. At first, the sloshing effect on the fluid interface is very small. But the vibration frequency sits in the unstable region of the parameter space, and the perturbation, which began as a small sloshing, grows very quickly. In a real system (as opposed to a mathematical one), this kind of unstable or unbounded growth very quickly leads to destruction. (Video credit: S. Srinivas)

Much as I try to keep from getting repetitious, this was just too neat to pass up. This new music video for The Glitch Mob’s “Becoming Harmonious” is built around the standing Faraday waves that form on a water-filled subwoofer. The vibration patterns, along with judicious use of strobe lighting, produce some fantastic and kaleidoscopic effects. (Video credit: The Glitch Mob/Susi Sie; submitted by @krekr)

The recently released music video for Jack White’s “High Ball Stepper” is a fantastic marriage of science and art. The audio is paired with visuals based around vibration effects using both granular materials and fluids. There are many examples of Faraday waves, the rippling patterns formed when a fluid interface becomes unstable under vibration. There are also cymatic patterns and even finger-like protrusions formed by when shear-thickening non-Newtonian fluids get agitated. (Video credit: J. White, B. Swank and J. Cathcart; submitted by Mike and Marius)

Soil liquefaction is a rather unsettling process in which apparently solid ground begins moving in a fluid-like way after agitation. It occurs in loose sediments when the spaces between individual particles become nearly saturated with water. This can happen, for example, after heavy rains or in a place with inadequate drainage. Such cases are typically very localized, though, and require some significant agitation of the surface, like pressing with heavy machinery or jumping in a single spot. Soil liquefaction becomes a greater danger, however, in an earthquake. Even in a dry area, the earth’s shaking can force groundwater up into the surface sediment and vibrate the soil sufficiently to liquify it, causing whole buildings to sink or tip and wreaking havoc on manmade infrastructure. (Video credit: jokulhlaups)

Over the past few years, researchers have been exploring the dynamics of droplets bouncing on a vibrating fluid. These systems display many behaviors associated with quantum mechanics, including wave-particle duality, single-slit and double-slit diffraction, and tunneling. A new paper examines the system mathematically, showing that the droplets obey many of the same mathematics as quantum systems. In fact, the droplet-wave system behaves as a macroscopic analog of 2D quantum behaviors. The implications are intriguing, especially for teaching. Now students of quantum mechanics can experiment with a simple apparatus to understand some of the non-intuitive aspects of quantum behavior. For more, see the paper on arxiv. (Image credit: D. Harris and J. Bush; research credit: R. Brady and R. Anderson)

Paint is probably the Internet’s second favorite non-Newtonian fluid to vibrate on a speaker—after oobleck, of course. And the Slow Mo Guys' take on it does not disappoint: it's bursting (literally?) with great fluid dynamics. It all starts at 1:53 when the less dense green paint starts dimpling due to the Faraday instability. Notice how the dimples and jets of fluid are all roughly equally spaced. When the vibration surpasses the green paint’s critical amplitude, jets sprout all over, ejecting droplets as they bounce. At 3:15, watch as a tiny yellow jet collapses into a cavity before the cavity’s collapse and the vibration combine to propel a jet much further outward. The macro shots are brilliant as well; watch for ligaments of paint breaking into droplets due to the surface-tension-driven Plateau-Rayleigh instability. (Video credit: The Slow Mo Guys)