Fuck Yeah Fluid Dynamics

Celebrating the physics of all that flows. Ask a question, submit a post idea or send an email. You can also follow FYFD on Twitter and Google+. FYFD is written by Nicole Sharp, PhD.

Recent Tweets @
Posts tagged "icicle growth"

The time-lapse video above shows the growth of icicles of various compositions under laboratory conditions. Many icicles in nature exhibit a rippling effect in their shape, which some theories attribute to an effect of lower surface tension in some  liquids. Here researchers show the icicle growth of three liquids: pure distilled water, and water with two concentrations of dissolved salt. They found that lowering the surface tension of the freezing liquid with non-ionic surfactants (i.e. not salt) did not produce ripples, but that dissolved ionic impurities like salt strongly affected the growth of ripples. They posit that this may be due to constitutional supercooling, in which growth of the solid-liquid interface is destabilized by the preferential concentration of impurities near the interface. (Video credit: A. S. Chen and S. Morris)

I discovered this interesting bit of icing a couple years ago near the foot of a waterfall in Ithaca, NY. The predominant wind was always heading toward the falls (left to right in these pictures), while the falls were always throwing spray up into the wind. The result was that ice airfoils (center) formed in the wake of each tree branch throughout most of the gorge (top).

New research suggests that icicles grow straighter when exposed to moving air while exposure to still air can cause icicles to sprout at their tips. To grow icicles, the researchers built a refrigerated box that dripped water from the top while the growing icicle rotated. Understanding ice growth is important for flight aerodynamics and icing on airplane wings. For videos and more on icicle growth, see the article at Wired Science. #