Fuck Yeah Fluid Dynamics

Celebrating the physics of all that flows. Ask a question, submit a post idea or send an email. You can also follow FYFD on Twitter and Google+. FYFD is written by Nicole Sharp, PhD.

Recent Tweets @
Posts tagged "fluid dynamics"

Rotation can cause non-intuitive effects in fluid dynamical systems. UCLA Spinlab’s newest video tackles the problem using four demonstrations. The first two deal with droplets released in air, first in a non-rotating environment and then in a rotating one. As one would expect, in a non-rotating environment, droplets fall through the tank in a straight line. When rotating, though, the droplets follow a deflected, straight-line path due to centrifugal effects. This is the same as the way passengers in a car feel like they’re being thrown to the outside of a turn on a curvy road. When the experiment is repeated with a tank of water instead of air, the results are different. The densities of the creamer and water are much closer to one another, so the droplet falls much slower than before. The tank now rotates faster than time it takes the drop to fall. This smaller timescale means that the droplet experiences more acceleration from Coriolis forces than centrifugal forces in the rotating tank of water. Thus, instead of being thrown outward, the drop now forms a column aligned with the axis of rotation. (Video credit: UCLA Spinlab; submitted by Jon B.)

Undoubtedly one of the most mind-boggling instances of fluid dynamics I’ve learned about in writing FYFD is that of sonoluminescence - an effect in which light is produced from imploding cavitation bubbles. In a laboratory, the effect is usually initiated with acoustic waves. A bubble can be forced to oscillate and collapse periodically when forced by the sound. During the collapse, the vapor inside the bubble reaches temperatures of the order of thousands of Kelvin, and light is produced. What is far more wild, though, is that the effect occurs in nature as well. Both the pistol shrimp and the mantis shrimp produce the effect. As shown in the video above, the mantis shrimp swings its club-like arm with such speed that the local pressure drops below the vapor pressure, causing a cavitation bubble to form and sonoluminescence to occur. Some real Mortal Kombat finishing move s&#% there, indeed.  (Video credit: Z. Frank)

Spend an hour watching the clouds roll overhead and no two of them will be the same. The complexity and dynamic motion of turbulence make these flows fascinating, even mesmerizing, to watch. Humans are a pattern-seeking species. We like to seek order in apparent chaos, and this, perhaps, is what makes turbulence such a captivating subject for scientists and artists alike.

Nicole Sharp, “The Beautiful Unpredictability of Coffee, Clouds, and Fire”

Something a little different today. I have a guest post over at Nautilus about looking for patterns in turbulence. Go check it out!

Rogue waves—individual, isolated waves far larger than the surrounding waves—were reported for centuries by sailors. But their stories of massive walls of water appearing in the open ocean were not corroborated until 1995 when a rogue wave struck an offshore platform. How these giant waves form is still under active research, but one leading theory is that nonlinear interactions between waves allow one wave to sap energy from surrounding waves and focus it into one much larger, short-lived wave. I first learned of rogue waves during a seminar in graduate school. At the time, this idea of nonlinear focusing had only been explored in simulation, but a few years later a research group was able to demonstrate the effect in a wave tank, as shown in the video above. Wait for the end, and you’ll notice how the rogue wave that takes down the ship is much larger than its predecessors. For more on rogue waves and their mind-boggling behavior, be sure to check my previous post on the subject.  (Video credit: A. Chabchoub, N. Hoffmann, and N. Akhmediev)

Today’s post continues my retrospective on mind-boggling fluid dynamics in honor of FYFD’s birthday. This video on the Kaye effect was one of the earliest submissions I ever received—if you’re reading this, thanks, Belisle!—and it completely amazed me. Judging from the frequency with which it appears in my inbox, it’s delighted a lot of you guys as well. The Kaye effect is observed in shear-thinning, non-Newtonian fluids, like shampoo or dish soap, where viscosity decreases as the fluid is deformed. Like many viscous liquids, a falling stream of these fluids creates a heap. But, when a dimple forms on the heap, a drop in the local viscosity can cause the incoming fluid jet to slip off the heap and rebound upward. As demonstrated in the video, it’s even possible to create a stable Kaye effect cascade down an incline. (Video credit: D. Lohse et al.)

Wingtip vortices are a result of the finite length of a wing. Airplanes generate lift by having low-pressure air travelling over the top of the wing and higher pressure air along the bottom. If the wing were infinite, the two flows would remain separate. Instead, the high-pressure air from under the wing sneaks around the wingtip to reach the lower pressure region. This creates the vorticity that trails behind the aircraft. I was first introduced to the concept of wingtip vortices in my junior year during introductory fluid dynamics. As I recall, the concept was utterly bizarre and so difficult to wrap our heads around that everyone, including the TA, had trouble figuring out which way the vortices were supposed to spin. A few good photos and videos would have helped, I’m sure. (Photo credits: U.S. Coast Guard, S. Morris, Nat. Geo/BBC2)

Next week marks FYFD’s 4th birthday! It’s hard to believe that it’s been so long, or that the blog and I have come so far. I set out with the intention of explaining fluid dynamics to a broad audience because it’s a subject we all experience daily and yet one that few learn formally. (I also, as you may have guessed from the blog’s name, didn’t take things too seriously.) Many things have surprised me these past four years, but one of my favorites is how much I’ve learned. In researching and writing FYFD, I am constantly learning new and fascinating physics. I love it every time something new stuns me with its beauty, its cleverness, or its jaw-dropping, mind-blowing awesomeness. In celebration of that feeling, next week’s posts will revisit some of my favorite subjects, especially those that did and do amaze me. In the meantime, try not to let the ice cream melt. Unless you’re into that. (Video credit: I. Yang; submitted by Stuart B.)

Rockets often utilize liquid propellants for their combustion. To maximize the efficiency during burning, the liquid fuel and oxidizer must mix quickly and break up into an easily vaporized spray. One method to achieve this is to inject the fuel and oxidizer as liquid jets that collide with one another. For high enough flow rates, this creates a highly unstable liquid sheet that quickly atomizes into a spray of droplets. The animation above shows an example of two impinging jets, but rockets using this method would typically have more than just two injection points. Other rockets use co-axial or centrifugal injectors to mix and atomize the fuel and oxidizer prior to combustion.  (Image credit: C. Inoue; full-scale GIF)

Rockets often utilize liquid propellants for their combustion. To maximize the efficiency during burning, the liquid fuel and oxidizer must mix quickly and break up into an easily vaporized spray. One method to achieve this is to inject the fuel and oxidizer as liquid jets that collide with one another. For high enough flow rates, this creates a highly unstable liquid sheet that quickly atomizes into a spray of droplets. The animation above shows an example of two impinging jets, but rockets using this method would typically have more than just two injection points. Other rockets use co-axial or centrifugal injectors to mix and atomize the fuel and oxidizer prior to combustion.  (Image credit: C. Inoue; full-scale GIF)

Over at Smarter Every Day, Destin has a new video, this time about how fish eat, which involves some pretty awesome physics. Instead of accelerating their entire body to close the distance to prey, fish thrust their jaws forward. As they do, they open their mouth, expanding the volume there and lowering the pressure. This causes water to flow into their mouth, pulling the prey with it. But the water has momentum, which would push the fish backward. To prevent this, the fish then opens its gills, allowing the water to rush back out while trapping the prey in its mouth. Be sure to check out Destin’s video so that you can see the process in high-speed. (Video credit: Smarter Every Day)

The hummingbird has long been admired for its ability to hover in flight. The key to this behavior is the bird’s capability to produce lift on both its downstroke and its upstroke. The animation above shows a simulation of hovering hummingbird. The kinematics of the bird’s flapping—the figure-8 motion and the twist of the wings through each cycle—are based on high-speed video of actual hummingbirds. These data were then used to construct a digital model of a hummingbird, about which scientists simulated airflow. About 70% of the lift each cycle is generated by the downstroke, much of it coming from the leading-edge vortex that develops on the wing. The remainder of the lift is creating during the upstroke as the bird pulls its wings back. During this part of the cycle, the flexible hummingbird twists its wings to a very high angle of attack, which is necessary to generate and maintain a leading-edge vortex on the upstroke. The full-scale animation is here. (Image credit: J. Song et al.; via Wired; submitted by averagegrdy)

The hummingbird has long been admired for its ability to hover in flight. The key to this behavior is the bird’s capability to produce lift on both its downstroke and its upstroke. The animation above shows a simulation of hovering hummingbird. The kinematics of the bird’s flapping—the figure-8 motion and the twist of the wings through each cycle—are based on high-speed video of actual hummingbirds. These data were then used to construct a digital model of a hummingbird, about which scientists simulated airflow. About 70% of the lift each cycle is generated by the downstroke, much of it coming from the leading-edge vortex that develops on the wing. The remainder of the lift is creating during the upstroke as the bird pulls its wings back. During this part of the cycle, the flexible hummingbird twists its wings to a very high angle of attack, which is necessary to generate and maintain a leading-edge vortex on the upstroke. The full-scale animation is here. (Image credit: J. Song et al.; via Wired; submitted by averagegrdy)